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SUMMARY

Ileat-tran,_fer data were evaluated from tempera-

lure time hi._'tories mea,_ured on a cooled cylindrical
model with a eone-,shaped iwse and with turbuleld

flow at Much numbers 3.00, 3.44,4.08, 4.5(;, and 5.0/t.
The experir_ental data were compared with calculated

_,alues using a modred ReynoId._" analogy between
skin fi'ietion and heal tran._fer. Theoretical ._'l_'in-

friction eoed_eiel_t.s' were calculated u,_i_g the method

of Van Drie,s't and the method of Sommer and Short.

The heat-tran._fer data obtained from the model

were found to correlate when the T' method of Sore-
met and Short u,as used. The increase in turbulent

heat-tran,_'fer rate with a reduction in. wall to free-

stream temperature ratio was of the ,same order of
magnitude as has been found for the turbulent

skin-friction eoeficie_t.

INTRODUCTION

With the emphasis on higher and higher speeds

for modem aircraft, the effects of aerodynamic

heating and the importance of being able to pre-

dict the rates of heat transfer are well recognized.
For laminar flow the method of predicting heat

transfer is fairly accurate and reliable; however,

for turbulent flow there still exists an uncertainty

with regard to evaluating heat transfer.
For subsonic turbulent flow the correlation

between hea_ transfer and skin friction by means
of Resnlolds amflogy has been well established.

For supersonic flow a modified Reynolds analogy
relating heat transfer and s]dn friction has been

presented by Rubesin in reference I. Consider-
able skin-friction data have been correlated in
reference 2. The results of these two references

can be used for predicting turbtdent heat transfer.
An alternative method is to use the theoretical

work of Van Driest (ref. 3). These methods

Supersedes NACA Technical Note 4236 by Thorwd Tend(,land, 195,_.

predict heat transfer fi)r turbulent air flow with a

zero pressure gradient.
A considerable amount of turbulent heat-trans-

fer data has been reported, for example, references

4 through 11. IIowever, tlm majority of the

investigations were conducted at relatively low
Mach numbers and with low heat transfer or with

wall temperatures near recovery temperatures.

The data of reference 2 show a large increase in
skin fi'iction with an increase in heat transfer.

The purpose of flits investigation was to obtain
turbulent heat-tt'ansfer data at various Mach

numbers and at various ratios of wall to free-

stream temperature and to check the prediction,

based on skin-fi'iction measurements of reference 2,

that a decreasing wall-temperature ratio causes a
large increase in heat transfer or Stanton number.

SYMBOLS

A surface area

f1 e:dxCv average skin-friction coeffic, ient, x

local shear
c: local skin-friction, coefficient, 1

PlUz2

cp specific heat

q
h. local heat-transfer coefficienI, T,--T,_

31 Mach number

p pressure
q ]ocal heat-transfer rate per unit areg

R Reynohls number, u_p:
#i

T_--T_
r recovery factor, ,,

1o--_11

S Sutherland constant (see eq. (9))
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h

St St anion nmnber, p_u_c_

T absolute temperature
t time

u air velocity

x cffcc, tive distance along the model

e emissivity
rm Thickness of model material

a Stefan-Boltzmann constant, 0.173X 10 -SBlu/

(hr) (sq rt,) (°R) _
p density of air

p,, density of model material

coefficient of viscosity

SUBSCRIPTS

av average

i incompressible
m model material

n condition at nitrogen spray tube
o stagnation value
r conditions at surface for zero heat transfer

t conditions at ttmnel wall

w conditions at surface of model

local stream condition at outer edge of

boundary layer
_" undisturbed free-stream conditions

SUPERSCRIPTS

' conditions at which incompressible flow rela,-

tions must be ewfluated in order to repre-

sent eompressible flow

w exponent for the temperature-ratio variation

of viscosity.

DESCRIPTION OF EQUIPMENT

WIND TUNNEL

The investigation was conducted in the Ames
10-inch heal-transfer wind tunnel which is a

variable-pressure, variabh,-tempenflure, contin-

uous-flow type with a Math number range from

3 to 5. A sehenmti< t diagram is shown in figure 1.

MODEl,

Two models were used in the investigation:
a pressure-distribution model to measure surface

pressures and a lomperature-dislribulio1_ model.

A sketch of the two models is shown in figure 2.
Both models consisted of a 2-ineh-di'_meter

cylindrical body approximately 14_,{ inches long

and equipped with a 20 ° included-angle nose
section. At, nine longitudinal stations on the

cylindrical portion of the pressure-distribution

,uetle shows actual size relationships of tunnel components

Heat transfer coils
"x To compressor

Anti-turbulence screens X,. \
, . ., \. Test section / \ \_ '_

r_eottransrerco,,s .__ t_ / 2'*
Inlet _ _....,.__

-Heater

I:I_WRE l.--Schematic drawing of the Ames 10-inch heat transfer wind tunnel,
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A l'res,'qlre orifices C Nitrogen spray tube

B Thel'mOcOUph,s D Spacers

(a) Pressure disllibution model.

(b) Temperature dislribution model.

FIt:yR,: 2.--Sketch of models.

moth,l there were pressure laps. Two pressure

taps were loenled on the nose section of the model,

one on lhe top surface and one dialneh'ically

opposite on the bottom surface. Surf,tee pressures

were measured on a dibulylphthalate manometer.
The lemperature-distribution model was fabri-

caled from type 321 stainless steel. Considerable

care was taken in the machining of this model in
order to obtain a uniform diameter and a. uniform

wall thickness. The cylindrical section had a
wall thid{ness of 0.065 ineh. The wall of the

cone-shaped nose varied in lhiekness from 0.125
inch at the base to 0.166 inch at 1 inch from the

tip. There was a }4/-inch-diameter stainless-steel
lul)e along lhe model axis. The purpose of lhis

tube was to cool the model by spraying the inner

walls with litluid nitrogen. This tube was

equipped with approximately 140 small orifices

var3qng in diameter from 0.016 to 0.040 inch.

The spacing and size of the holes were selected
on the basis of preliminary tests to oblnin a

constant temperature along the model.
The model was itls{t'umented with 20 constant-

an-nichrome thernmcouples. Eighteen of the

thermocouples were located on the cylindrical

portion of lhe model, wilh three thermoeouples aL
each of six stalions. The other two thermo-

couples were spaced along the nose cone of the

model. The thermoeout)les were imbedded in the.

inner wall by means of a ]figh-temperature sohler

and the leads were brought out at the rear of tlm

mode], The tbermocot_p]e ]cads witbb) tlw modeJ

were supported and separated from the nitrogen

spray tube by means of thin cross-stmped supports

made fi'om a Fiberglas nmterial. Tlw size of the

thermocouple wire was No. 30 B and S gage for

lhe constantan wire and No. 32 B and S gage for
the nichronle wire. These thermocouph' mate-

rials were chosen because of their reason'fl)ly good

milIivolt temperature relationship aml lheir rela-

tive insensilivity to changes in resislanee with

changes in t.empera(uve. Time histories of the
wall temperature were obtained by recording the

thermocouple oulpuls on an oscillograph. Very
little data was obtained at station 1 on the model

as a result of the thermocouples breaking at
this stalion when the tunnel air flow was started

and stopped. The centiliters for the various tests
are as follows:

Moo

3. O0

3.44

4. 08

•1. 56

5. 0-t

7' °F

15

i5
15

po_

psia

37. 5

55. 0

81.6

83. O

85. 7

R_,fft,
million

3.0
4.0
3.6
2.8
2.3

BOUNDARY-LAYER TRIP

For all of the tests a boundary-htyer trip made

from 1-50 D garnet paper, with most of the back-

ing removed, was used. A slrip of lhis paper np_

proximately _ inch wide was fastened to (he nose

of the model, 1_inch from the tip. With this trip,
[url)ulellt recovery tenlperalure was measured at

all thermocouple stations at MTaeh mlmbers up lo
5. For the tests at a Math number 5 it was neces-

sary to resort to two of these tril)S, lit(, second one

located approximately }{ inch downstream from

the first trip.

LIQUID NITROGEN EQUIPMENT

The equipment used to bring the liquid nitrogen
into the model is shown sclwmatieally in figure 3.
It consisted of an insulated stainless-steel tank

which was filled r.,om flasks used to store _nd

transport the liqui(l nitrogen. The liquid nitrogen
was forced into the model by pressurizing the,

stainless-steel tank with gaseous nitrogen. A

three-way valve was used in the line bet, wean the
model and the stainless-steP] tank, It, was neces-

sary to shut off the liquid nitrogen supply before
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A Test section H Gauge

a Model I Bh)w-out diaphragm

C }':z" Nitrogen purge line 3 Regulator

D }_" Nitrogen supply tube K 3-way valve

E Insulation k Liquid nitrogen tank

F St'finle_s steel tank M Nitrogen gas bottle

(20" X l l") N Free stream

G 2" Insulation

2

=10

]

M

FIC, URE 3.--Equiprnent used to supply liquid nitrogen 1o

ttte model.

taking temperature data,; lhe three-way valve

permitted this to be done quickly. Also by con-
netting the third passage from the valve to a low-
pressure re,on in the test section the residual

liquid nitrogen in the supply line to the model

could be purged rapidly. At the higher Math
numbers the model could not be eooh,d to as low a

temperature as desired because of the method
of removing the coolant fi'om the model. This

method was to exhaust the coolant into the wiml-

tunnel nit' stream a! the rear of the model. The

amount of coolant which the wind-tunnel air

stream could absorb without choking decreased
as the Maeh number was increased. Therefore

since the model wall temperature was dependent
on the amount of coolant that was used, the neces-

sity of reducing the quantity of coolant to prevent

choking of the wind tunnel resulted in less cooling

0figher model wall temperatures) at the higher
Maeh numbers.

REDUCTION OF DATA

DETER,_IINING HEAT-TRANSFER RATES

tIeat-transfi,r rates were evahmted from tem-

perature time histories of the model by means of
the following heat balances:

qmodel _- (_teonveetion) @ ((_radiation from t...... 't wall)

-- (_radiation to nitrogen spray tube)

or more explicitly from reference 12,

dTw 1 T

4

F ( Tt "_4 ( Tu:'_4q

I_]_A _,, l 1

F(r,,,y (T,,y- 1
A,,o-L\i06! - \Y00/A

'-+",,(£,)fi n 2| w

(1)

No corrections were made in the above equation

for axial or cireumferent.ial conduction along the
model. An estimate of thc effects of conduction

was made using the temperature gradients as
measured and it was found that this correction

amounted to approximately 3 percent of the con-

vective heat.-transfer rate at the worst condition,
.Math number 5. For lower Maeh numbers thc

correction was less. Therefore, the effects of axial

conduction were neglected.

To evaluate the heat transferred by radial;on

to the model an emmissivity of 0.2 was used for
the polished outer surface of the model. This
value was ot)tained from reference 13. For the

inner surface of the model, the nitrogen spray
lul)e, and lhe tmmel walls, an emissivity wtlue of
0.5 was used since these surfaces were discolored

and tarnished from heating. The specific heat of

the model and its variation wilh t.emperat ure were

obtained fi'om data given in reference 14 for type
347 stainless steel. The model was fabrica!ed

from !yl)e 321 stainless steel; however, these two

types of st'finless steel are practically identical in

composition, the main difference being that one is
stabilized wit.h a small amount of titanium and

the olher with cohmlbium. The theoretical spe-

cific heats of the two types of stainless steel were

compared by means of Kopp's rule (ref. 15) and
no significant difference could be determined.

In equation (1) lhe major problem is evaluating
the raie of change of model wall temperature with

time. To cwtluate this rate of change two methods
were used. The method which was used most

extensively was to (hqermine an ,_verage slope for

a smMl time interval by means of the ratio
AT,,,/,_t. Temperatures at the end of each time
interwtl were determined fl'om deflections taken

from the oscillograph records. An average wall

temperature for the time interval was use<l to
determine the radiation correction and the _T

between the model and the recovery temperature.

[!II



EFFECTS OF MACH NUMBER AND "WALL-TEMPERATURE RATIO ON TURBULENT HEAT TRANSFER 5

A second method was to plot the wall temperature

versus time, fair a curve through the data, and

determine slopes by means of a mirror. Both

methods gave essentially the same results. A

comparison of heat-transfer data as evaluated by

both methods is given in the discussion of i'esults.
No reduction of temperature data to determine
he'_t-transfer coefficients for the nose section was

undertaken because of uncertainties associated

with the wall thickness and also because of the

effects of axiM heat conduction with the relatively
thick wail.

EVALUATING A LOCAL REYNOLDS NUMBER

On a fla.t plate with a boundary-layer trip

located near the leading edge, one wouht expect

the effective origin for lurl)ulent flow to be located
some distance upstream from the trip location.

This location would depend upon the length of

run of laminar boundary hlyer preceding the

boundary-layer trip plus the increase in momen-

tum thickness of the bounda.ry layer caused by

the trip. Oa the present model, however, the

nose section was a cone and the rate of growth

of the boundary layer and conditions of flow are

different from those on a fiat plate. The boun-

dary-layer growth on tim cflindrieal section
should correspond approximately to that on a fiat

I)late (ref. 16).
It. was calculated that the nose cone moved the

effective origin for turbulent flow downstream

approximately 2}_/ inches from where it wouhl

have been if the model were cylindrical throughout

its length. In the calculations, local skin-friction
coefficients over the nose section were determined

on the assumption that turbulent flow originated
at the tip of the model. A length which would

give equivalent turbulent skin-friction coefficients

for a flat plate was then evaluated. In the cal-

culations, Mach numbers and conditions of flow

corresponded to those on the model. To obtain

additional information regarding the location of

the effective origin of the turbulent boundary

layer, local Stanton numbers for the various sta-

tions along the model were plotted versus Reynolds
numbers based on several assumed locations of the

origin of the turbulent boundary layer. The

slopes of curves f,'fired through the data were
then compared to the slopes as determined by the

method given in Appendix A. The best agree-

ment between the slopes was found when the

effective origin for turbulent flow was located

at the nose of the model. No significant differ-
ence could be detected fi)r the various Maeh

numbers. Therefore, for all of the tests local

Reynolds numbers were cah'uhlted with the effect ive

origin for turbulent flow located at the tip of the
model. The exact location of" the effective origin

for turbulent flow does not have a large effect

on the calculated local Stanton number for these

tests, because the model was fairly long and be-
cause Stanton number does not vary greatly

with Reynolds number. For example, a difference
of 2J_ inches in the location of the origin of the

turbulent boundary layer would cause a change

in Stanton number of approximately 3 to 6 per-

cent, depending upon the location on the model.

DETERMINING LOCAL FLOW CONDITIONS

Local vahies for Math number, temperature,

and density along the body were computed from

the measured pressure distributions on the assump-

tion that the total pressure was constant along

the body and equal to the calculated pressure
behind the shock wave at the nose of the model.

No extraneous shock waves which might affect

the flow or the assumption of constant total

pressure along the model could be detected from

pressure measurements or from schlieren pictures.
Free-stream Mach nuniber upstream of the shock
wave at the nose of the model was evaluated from

the ratio of stagnation pressure to tunnel side-wall

static pressure and also from the ratio of the
surface pressure on the nose cone to stagnation

pressure,.

RESULTS AND DISCUSSION

AIR FLOW AND TEMPERATURE-DISTRIBUTION RESULTS

Pressure and Mach number distributions,--In

figure 4 are shown the pressure distributions which
were measured on the pressure-distribution model

for free-stream Math numbers 3.00, 3.44, 4.08,

4.56, and 5.04. These are the Mach numbers at
which the heat-transfer tests were run. (Pressure

distributions also were measured when the model

was equipped with a boundary-layer trip consist-

ing of two 0.010-inch-diameter wires spaced ahmg
the nose. No effect of the trip could bc detected

on the surface pressures.) Shown in figure 4
are the theoretical pressure distributions of CIip-

pinger, Giese, and Carter (ref. 17) for Math
numbers 3, 4, and 5. Predictions wcrc not avail-
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Fzcum_ 4.--Pressure distributions along the model.

abh, for Math numbers 3.44 and 4.56. The

agreement of the data with the predictions of

reference 17 is fair. In figure 5 are the Maeh

number distributions along the model which were
calculated from the measured pressure distribu-

lions (fig. 4). The Maeh number variation along

the cylindrical portion of the model was approxi-
mately 6 t)ereen{ of the free-stream ._Ia('h number.

This is not a large change in Maeh number.

Shown in fi_mlre .5 also are values for the free-stream
Math number as (h,h, rmim'd from tmmel side-

w,dl pressure taps and also from pressures m(,qs-
nred on the nose cone of the model. Math number

as <h,tcrmined from these two methods was in

good agreement ; also, lhe Mach number variation

along the lest section was not large.
Temperature and recovery-factor distribu-

tions. Typical axial-temperature distributions

for lhe he.d-lransfer model during a temperature

lime-history run are shown in figure 6 for each of
the test Math numbers. The temperature dis-
Iributions lal)eled "starl of run" were measured

after the model was cooled, the liquid nitrogen

was shut off, aim the model wall tenlperalure was

rising. Before cooling, the model was run in the

wind tunnel for a considerable length of lime in

order to reach equilibrium temperature condilions

mid eliminate temperature gradients along the

model. As may be noted from figure 6, for _laeh

nuntbers 3.00, 3.44, and 4.08 the temperature dis-
trilmtions at the start of the runs were similar

an(l had a random scatter of approximately 12

percent of the temperature polential for heat
transfer. As the model temperature increased,
it became more uniform and the rate of lelnpera-

lure rise of the model was approximately the same

throughout its length. The heat-transfer rate on
Ihe nose cone was more than double the rate on

the cylindrical section but the wall thickness of
this section was increased to compensate for this

higher rate of heat transfer.
Recovery factors as evaluated from tempera-

tures measured along the model are shown also in

figure 6. These temperatures were obtaine<l prior
to a cooling run when the model was at an equi-
librium condition. After corrections were made

for a sin:all amount of radiant heat transfer to the

cooler tunnel side walls, these local temperatures

together with the local Mach number and the
measured stagnation temperature permitted local

recovery factors to be calculated. An examina-
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Disfonce in model diometers a:ong les! secfion

tion of figure 6 for test Mach numbers 3.00, 3.44,

and 4.08 shows values for recovery factors of

approximately 0.88 to 0.89. These values when

compared to values of 0.85 to 0.86 for laminar air

flow clearly indicate turbulent air flow over tim

model. The recovery faet.ol_ on the nose cone

were slightly lower than those on the cylindrical

section, a result, which also was found in the tests
of reference 18.

For Mach numbers 4.56 and 5.04 the tempera-

t.ure distributions and recovery factors along the
model become somewhat different. The difference

is that temperatures and recovery factors on the

cylindrical section near the junction of the cone
section were less than for the resl of the model.

As may be noted from figure 6 for Math numbers

4.56 amt 5.04 the recovery factors on the nose

section and toward the rear portion of the model
are wdues for turbulent flow. However, near [he

junction of the nose section, the values for recovery
factor are reduced an<t approach in magnitude
values for laminar flow. Similar results have been

published in reference 18. Model wall tempera-
tures in the vicinity of tim shoulder were also less
than those on the rest of the model. The cause

of this phenomenon may be associated with the

large reductions in surface pressures which occur

at. the junction between the nose cone and the

cylindrical afterbody and are shown in figure 4.
Since all of the theories used t.o predict, heat

transfer are based on an isothermal wall, lhere is

tile effect of axial-temperature gra<tients, such as

shown in figure 6, on the heat-transfer results.

The effects of axial-temperature gra<lients on local
Stanton number were calculated by the method

given in reference 19. For Math numbers 3.00,
3.44, and 4.08 the axial-temperature gradients

wouht have a small effect on the data. IIowever,

at Mach mlmbers 4.56 and 5.04 the abrupt reduc-

tion in wall temperature near the shouhler of the

cone and the cylindrical section wouhl cause

turbulent heat-(ransfer data in this region to be

(a) 31:0-3.00 (d) M_=4.56
(b) Moo= 3.4-i (e) Moo= 5.04
(e) ,lI_ = 4.08

FI_',t'RE 5.--Maeh number distributions along the model

and along the tunnel side w,dl.

5.1,_73--60- --2
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Fm_:a],: 6. -_ecovery fttetor and temperature distributions ,dong the model.

in error approximately 10 to ]5 percent. Since
the flow in this region appears to be neither lam-
inar nor turbulent, no a.ttempt was made to corre-
late these daht.

HEAT-TRANSFER RESULTS

Correlation of Stanton number with Reynolds
number.--Experimentally determined values of

Stanton nuinlwr are plotted as a function of
Reynohls number in figure 7 for constant wall-
temperature ratios a.d for each of the five test
Mach numbers. The varit_tions in Reynolds
number are due to the different values of length
from the start of turbulent flow for each thermo-

couple stalion. For each Math number the tests
were run at the highest pressure level or Reynolds
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F_cvaF, 7.--Typical variation of Stanton number with

12e_'nolds number.

number which could be obtained from the wind-

tunnel equipment; also, because of the difficulty

in obtaining turbulent flow along the entire

length of the model no attempts were made to
obtain heat-transfer data at lower stagnation

pressures or lower Reynolds numbers. For com-
parison theoretical curves of Stanton number are

also shown in figure 7. To cah'ulate the theoretical

curves, the methods of Van Driest (ref. 3) and of

Sommer and Short (ref. 2) were used to evaluate
skin friction and the correlation between skin

friction and heat transfer was based on the

modified Reynolds analogy of Rubesin (ref. 1).
The basis of the method of Sommer and Short is

the Kfirm_in-Schoenherr incompressibh, flow equa-

tion for average skin f,'i('tion which is

0.242

\_ -=log,0(GR) (2)

[)tit where the density and viscosity of the air are

evahntted at a temperature T' rather ttian T_.

The equation for T' whi(q_ has been found to
correlate the skin-friction data for turbuh, nt flow

(ref. 2) is

_= _ (T__ 1"_+0.035,111=+0.45
\T, } (3)

An examination of figure 7 shows that the data for

Math numbers 3.00, 3.44, and 4.08, although

having considerable statler, have approximately

the same slope as the theoretical curves; also, these
data are in better agreement with the calculated
curves when the method of Sommor and Short is

used than when the method of Van Driest is used.

For Math number 4.56 at station 2 and for Math

number 5.04 at stations 2 and 3 the values of

St anton numl)er are low compared to tim theo-
retical curves. These low values of Stanton

number are associated with lhc low rate of

temperature rise and the low recovery factors as

measured at these stations and as noted in figure

6. It is inleresting to note that the fully turbulent
heat-transfer data at Math numbers 4.56 and 5.04

in figure 7 correlate wilh a Reynolds numl)er based

on a. length t)eginning at the nose of the model.
This would indicate that so fa," as heat transfer is

concerned the effective origin of the turbulent
boundary layer is unaffected by the flow conditions

in the vicinity of the shoulder. For comparison

with the data obtained with the model internally
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cooh, d, a limited amount of heat-transfer data was
also obtained with the model externally cooled.
For these tests Iiquid nitrogen was sprayed into
the wind-tunnel air stream at. the center line of

the subsonic portion of the nozzle. Tile cool
nitrogen introduced into tile hot tunnel of air
stream cooled the center core of the air stream

which, in turn, cooled the model to approximately
175 ° F below recovery temperature. The nitrogen
was then shut off amt temperature time histories
of tile model wall were taken. Values of Stanton

number deternfined from the (emperature data
for Math numbers 4.08 and 4.56 are sho_m in

figure 7. These data are in fair agreement with
those obtained with the model internally cooled.

The effect of wall-temperature ratio on Stanton
number.--Since one of the main objectives of this

investigation was to obtain heat-transfer data
with variable wall temperatures, a plot of local
Stanton number versus wall to free-stream temper-
ature ratio is shown in figure 8. The data shown
in figure 8 were obtained at station 4 and are
representative of all the data. For comparison
with the data, curves calculated by the methods
of references 2 and 3 are also shown in figure 8.
The effect, of a decrease in wall-temperature ratio
was to increase the heat-transfer rate. The curves

calculated by the methods of Sommer and Short
and of Van Driest also stlow an increase in heat

transfer with decreasing wall-temperature ratio,
with the predictions by tile Sommer and Short
method showing the greatest effect of wall-tem-
perature ratio. Ill figure 8 the data also appear to
be in better agreement with the predictions made

by the method of Sommcr and Short.
Shown ill figure 8 for a N[ach number 3.00 are

two sets of data both for the same thermocoup](,
but, the slopes were determined for one set 1)y
means of a mirror and for the other set by the use
of the ratio 'ST_/At. As may be noted from tilts

figure determining slopes by either of t]lc two
methods restdts in essentially tile same value of
St anion number.

Correlation of test data on the basis of St' and

R'.--As a result of the agreement of the data in
figures 7 and 8 with the curves calculated by
means of the correlation of Sommer and Short, all

of the fully turbulent data were correlated on the
basis of St' versus R'. This correlation is shown

in figure 9. Tile prime superscript indicates thai
the density and viscosity of the air were evahmted
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temperature 7".

St=St' L =St' (5)
XP ii

or

(qSt'=St y,. (6)

and as noted l)revimmly

T--
TI -- l + 0.035M]'+0.45 (T_-- 1)

the relationship between R_ and R' is

oi"

1

,,:r,, (r'_ {_.'_ (s)
\_/\;,/

and where g'/gz can be determined from the

Sutherland equation, or

_' {r'_I.s{Z,@S'_

_=\_,',/ \T_/ (o)

The curves shown in figure 9 were calculated by

means of the analogy between skin friction and
heat transfer of reference 1 with local sldn friction

evaluated by the incompressible flow equation of
Von K_irm_fn and Schoenherr which is

o.5580_ 0o)
c_-0.55s+_ C_7.

and for average skin friction

0.242 ,

-_,r -=rag10 R_C_, (11)

If the correlation of St' and R' is used, the data for

all Mach numbers and all wall-temperature ratios
should correlate with one curve. In figure 9

separate plots of data were shown for each of the
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Mach numbers in order to simplify the presenta-
tion of the data and to note any trend or difference
between the various Mach numbers. An exam-

ination of figure 9 shows that although {he data

have eonsideral)le scatter the agreement with the

curve is quite good for all Math numbers. A

simplified equation for St' which correlates the

data and fits the curve shown in figure 9 within

2 to 3 percent over tlle Reynohls number range
fronl 100,000 to 10,000,000 is

St'-- 0.026
(R,)o. ls 02)

Correlation of test data on the basis of SI/Sh
with T'/T,.--All of the turbulent heat-transfer

data obtained are plotted in figure 10 as St/St,
versus T'/T_. The vahws of Sh were calculated

by means of the K_irmfin-Schoenherr equation for

skin friction together with the modified Reynolds
analogy of reference 1. The curve shown in

figurc 10 was calculated by the method given in
reference 2 and the relationship

St G,
st-,=G,

A simplified equation for tl_e relationship of SIt'St,

lo T'/T_ is given in Appendix B. An examination

of figure 10 shows that the heat.-transfer data for

all five Math numbers and for all ratios of T'/Tt

agree well with the skin-frielion correlation as rep-

resented by the curve. Tile method of least

squares was used to fit a curve to the data and it
was found that the maximum (teviation between
this curve and tile theoretical curve shown in

figure 10 was approximately 4 l)ereenl in the values
of St/Sh.

As a result of the correlation of tile data with

the ratio T'/T, a similar analogy was applied to
the results of other heat-transfer investigations

and is shown in figure 11. The data shown in

figure 1t for the different investigations are not

complete sets but were chosen to be representative

of the results of the particular investigation. The
curve shown in figure 11 is the same curve as shown

in figure 10. The data plolted in figure 11 show
scatter which is typical of heat-transfer measure-

ments but they also follow the general pattern of

substantiating tile skin-friction correlation of refer-

ence 2. At. the higher Math numbers (i.e., higher

ratios of T'/T_), the data of Lobb, WinMer, and
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Persh (ref. 6) are low as compared to the calcu-

lated curve. Other data available for the higher

Mach numbers are not sufficiently complete to
enable correlation in this manner.

CONCLUSIONS

Heat-transfer data were evaluated from tem-

perature time histories measured on a cooled

cone-cylinder model with a turbulent boundary-
layer. The results can be sumnmrized as follows:

1. The ratio of wall to free-stream temperature

has an appreciable effect on the heat-transfer
rate and /lie increase in heal-transfer rate with

decreasing wall-temperature ratio is equivalent
to the increase in turbulent skin-friction coeffi-

cient which has been measured previously.

2. The T' method used by Sommer and Short
to correlate turbulent skin-friction data with

Mach number and wall-temperature ratio has
been found to correlate the turbulent heat-transfer

data of this investigation.

AMES AERONAUTICAL LABORATORY

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

._IoFFETT FIELD, CALIF., JAN. 28, 1958

APPENDIX A

DETERMINING SLOPE OF STANTON NUMBER

VERSUS REYNOLDS NUMBER CURVE

The results of reference 2 for a given Mach num-

ber and wall-temperature ratio have shown that

C'F/(_r_ is a constant, with the exception of a small

dependence on Reynolds number. On the basis of

the analog'y between skin h'ietion and heat transfer
the same conclusion is indicated with regard to the

ratio, St/Sh. If the effect of Reynolds mmll)er,

which is small for the range of the test conditions,

is neglected, then

St
=constant (A1)

Stt

A simplified equation for Sh, simila, r lo equation

(12) but with the air properties evalua, ted at a

temperature T, rather than T', is

0.026
St,-- (R_)°'_s (A2)

From equations (A1) and (A2)

S constant, constan{

t= (R,)0._ --_-x_ s (AS)
\ /.zt /

Therefore, for a given Ma(!h number and wall-

temperature ratio a plot. of St versus R_ shouht

have a slope of approximately 0.18. The longer

the model or the larger the variation in x the more

accurately the slopes can be determined.
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APPENDIX B

SIMPLIFIED RELATIONSHIP OF
St, T'

TO Ti

and

As has been shown in the discussion of results,

TI

St St' _, (5)

0.026
St'-- (12)

(R,)o.,_

These two equations yield

S 0.026 (T,'_= 0226

With the relationships

P, T'
p'--TI

.,,<l
m \T_ /

the equation for St becomes

0 096 /T '\°Is'*-°'8_

\ lgl I

(B1)

(B2)

0.026 1

\ _,, I \T,}

For lhe tempera, lure conditions of the tests, w was

chosen as 0.8, then

0.026 l

S_ =(io 1,l,1 j,x)0.18 (.r,. 0.676 (B4)

\ _, / \rT)

From equation (A2), Sti is

0.026
St,- (/%)o.,_ (17)

Using this equation for Sh and equation (B4) for

St gives

St 1

kT'_ }

or
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